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Abstract. A general bead-spring model is used to predict linear viscoelastic properties of a non-Hookean bead-
spring cube immersed in a Newtonian fluid. Tiisc K x K cube consist ok 3 beads with equal friction coeffi-
cients and X 2(K —1) equal Fraenkel springs with length The cube has a topology based upon a simple cubic
lattice and it is confined to a container of voluivie= (Kq)3. The confined cube is subjected to a small-amplitude
oscillatory shear flow with frequeney, where the directions of the flow velocity and its gradient coincide with two
principal directions of the simple cubic bead-spring structure. For this flow field an explicit constitutive equation
is obtained with analytical expressions for the relaxation times and their strengths. It is found that the resulting
relaxation spectrum belonging tokax K x K Fraenkel cube has the same shape as the one belonging to a ‘two-
dimensional’K x K cubic network consisting of equal Hookean springs. On the other hand, the dynamic moduli
G’ (w) and G” (w) belonging to akK x K K Fraenkel cube appear to have the same frequency-dependency as the
ones belonging to a ‘three-dimension&l’x K K cube consisting of equal Hookean springs.
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1. Introduction

To predict the rheological properties of a dilute solution of flexible polymer molecules in a
Newtonian fluid several bead-spring models have been developed. The Rouse model [1, 2]
constitutes the basis of many of these bead-spring models; only one of these models incor-
porated the possibility to choose bead-spring structures with an arbitrary topology instead of
linear chains (see Sammler and Schrag [3-5]). Recently, we have developed a new bead-spring
formalism [6], which provides the mathematical justification for the intuitive results obtained

by Sammler and Schrag.

This new bead-spring formalism has already been used to predict the linear viscoelastic
properties of a cubic bead-spring structure of arbitrary size immersed in a Newtonian fluid [7].
The topology of this cube was based upon the well-known cubic crystals (simple, body-
centered, or face-centered cubic lattice) and it consisted of equal Hookean springs and beads
with equal friction coefficients. An explicit constitutive equation was obtained with three sets
of relaxation times belonging to the three types of bead-spring cubes (SC, BCC, and FCC).
In case of a small-amplitude oscillatory shear flow with frequesadye obtained dynamic
moduli G'(w) and G"(w) did not show a significant dependency on the specific cubic topol-
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ogy (in a qualitative sense), although the three relaxation spectra (SC, BCC, and FCC) were
significantly different.

The obtained relaxation spectrum belonging to a large Hookean bead-spring cube is quite
intriguing: for a sufficiently large cube the discrete relaxation spectrum is changed into a ‘con-
tinuous’ one in which a small number of discontinuities can be observed. These discontinuities
are closely related to the so-called Van Hove singularities [8, 9], which are well-known in
solid-state physics [10]. In solid-state physics it has already been observed that a periodic or-
dering of atoms will result in one or more Van Hove singularities and we therefore considered
in [8] the following three Hookean systems: (i) a linear chaihldeads,K —1 springs), (ii) a
‘two-dimensional’ K x K cubic network, or (iii) a ‘three-dimensionaK x K K cube (with a
simple cubic topology) immersed in a Newtonian fluid. In case that the size parameter
is sufficiently large, the obtained ‘continuous’ relaxation spectra belonging to these three
Hookean systems (equal springs and beads with equal friction coefficients) show clearly one,
two and three discontinuities, respectivalg,, the number of Van Hove singularities appears
to be associated with the dimension of the Hookean structure. Although all these Hookean
structures have a topology based upon a crystalline lattice, this does not necessarily imply
the same kind of bead ordering in real space. Actually, due to the Hookean character of the
springs, a crystal-like ordering of the beads in real space is, in general, by no means present.

In this paper we will consider a bead-spring system which does have a crystal-like bead
ordering in real spaceé.e., we will consider a cube immersed in a Newtonian fluid in which
the Hookean springs are replaced by equal springs of the Fraenkel type [2, 11]. This Fraenkel
bead-spring cube (with equal friction coefficients for the beads) has a topology based upon a
simple cubic lattice and it is confined to a cubic container in such a way that it cannot rotate
freely anymore.

The main difference between a Hookean simple cubic structure and a confined Fraenkel
one is the absence and presence, respectively, of the simple cubic ordering of the beads in
real space. One of the aims of this paper is to investigate if this difference in bead ordering
will result in different linear viscoelastic properties. To that end, we will try to answer the
following questions: In what way do the relaxation spectrum and the dynamic mGdul)
and G”(w) belonging to the confined Fraenkel cube differ from the ones belonging to the
Hookean cases mentioned before? In case that the Fraenkel cube is sufficiently large, does
one obtain a ‘continuous’ relaxation spectrum? If so, how many Van Hove singularities can
be distinguished?

The outline of this paper is as follows. In Section 2 we discuss some general aspects that are
independent of the spring characteristics. In Section 3 we start to model the system consisting
of a Fraenkel bead-spring cube immersed in a Newtonian fluid, which is confined to a cubic
container. In Section 4 we restrict ourselves to a small-amplitude oscillatory shear flow, where
the directions of the flow velocity and its gradient coincide with two principal directions of the
simple cubic bead-spring structure. For such a flow field the following results are obtained:
(i) relaxation spectra for four different sizes of the Fraenkel culeg @5°, 5¢°, 10, and
100C beads), (i) an exact calculation of the dynamic mod&fliw) and G (w) for a large
Fraenkel cubeif. 100G beads), and (i) asymptotic expressions for the dynamic moduli
valid for a Fraenkel cube of arbitrary size. We end this paper by giving some concluding
remarks in Section 5.
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Figure 1. A 3 x 3 x 3 bead-spring cube consisting of 27 beads and 54 springs. The three principal directions of
the cubic structure are denoted byy, andz.

2. Some general aspects that are independent of spring characteristics

2.1. SOME MATRICES

In this paper we consider a bead-spring structure immersed in a Newtonian fluid with a topol-
ogy based upon a simple cubic lattice. In Figure x88% 3 bead-spring cube is shown, where
the directionsx, y, andz correspond to the three principal directions of the cubic structure.

In general, & x K K bead-spring cube with a topology based upon a simple cubic lattice
consists ofV = K3 beads and/ = 3K?(K — 1) springs and we denote tid bead position
vectors and the/ connector vectors by the symbalsandr,, respectively. These two vector
sets are interrelated to each other through a topology m@ates

N ~
Gail. 1)
i=1

-
Q
Il

The particular values of the matrix elements(»fdepend upon the chosen directions of the
connector vectors and upon the schemes used to number the bead positionryetdrso
number the connector vectdrs. An appropriate way of numbering leads to [7, 8]

G* G ® 8k Q 8k
G=| & |=]|6®G®5 |, (2)
G* Sk @k ®G

where the submatrice§*, G, and G* are associated with the springs in the y-, and
z-direction, respectively.

The symbol® used in Equation (2) denotes the so-called Kronecker product [12, 13],
which is defined for an arbitrar® x Q matrix X and an arbitrany® x S matrixY as
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X11Y ... XipY
XQY = N : ) (3)
Xp1Y ... XpoY

SOX ® YisaPR x QS matrix.

The matrixsx in Equation (2) is & x K identity matrix and thé K — 1) x K matrixG in
Equation (2) is defined as

5 5 " i=1...(K-1 @
G," = 0j(i—1) — 0jj wit
J (=D J ji=1...K,

in which §;; is the Kronecker deltas(; = 1if i = j, §;; = 0if i # j). Itis noted that this
matrix G is identical to the topology matri& belonging to a linear Rouse chain consisting of
K beads an& — 1 springs [2, 8].

The symmetric matri¥d = G’ G is a generalization of a matrix used by Rouse [1, 2] and
it is given by

A=A+ A + A%, (5)

where the symmetric matrices' = G*' G*, A” = G*' G, andA® = G*' G* are given by

A" =GT'G ® 8k ® 5, (6)
A =8 GG ® 8¢, (7)
A =8 ® 8k @ GTG. (8)

These four matriced, A*, AY, and A* can be diagonalized simultaneously by a transforma-
tion matrix Q as follows:

(QTA*Q)ij = (AA ® 8k ® 8x)ij = a; 8y, 9)
(QTAYQ)ij = 6k ® AA ® 8k)ij = 4] i), (10)
(0T A*Q)i; = 8k ® 8k ® AA),;; = a’éyj, (11)
(Q"AQ);; = (@ +a’ +a?)s;, (12)

whereQ is aK® x K3 orthogonal transformation matrix¢., 01 = Q7) and the diagonal
matrix A in Equations (9), (10), and (11) is defined as

i —1 i=1...K
Ajj = Zsin((l )n) 8i;  with (13)
2K j=1...K.

For example, forKk = 2 the three sets of eigenvalues are = (00002222, a¥ =
(00220022, anda®* =(02020202.
The expression for the orthogonal transformation mafriis given by

O=(R®R®R) with R= (\/—%VK GTQF1> : (14)
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in which the column vectoVg is aK x 1 vector with all its elements equal to one, the matrix
G is defined by Equation (4), and the symmetric magiand diagonal matriX” are defined
as

’ =1, (K—1
Qijzw/%sin(%> with [’. . EK 1; (15)
j=1...(K-1),

: i =1...(K—1
ry zzsin(ﬂ> 5, with | (=D (16)
2K ) - j=1...(K =1).

We note that theK — 1) x (K — 1) matrix GG' is diagonalized by the orthogonal
transformation matrixQ defined by Equation (15), while the eigenvalues @&! are
equal to the squares of the diagonal elements of matrdkefined by Equation (16),e.,
QTGGTQ =TT [2]. On the other hand, th& x K matrix G’ G is diagonalized by the
orthogonal transformation matrik defined in Equation (14),e., RTGTGR = AA, where
the diagonal matrix\ is defined in Equation (13).

2.2. SOME EQUATIONS

The configuration of & x K K bead-spring cube changes in time according to the equation
of motion for theN = K2 bead position vectons given by [6, 7]

, 1( _dlogy &~ -
i=L-r;——|kT Giifa |, 17
=t (e S )

wheref, is the spring force parallel to connector vedigr k the Boltzmann constant; the
absolute temperaturej; (r”, t) the distribution function in configuration space of the set of
N beads in which denotes its time-dependengythe friction coefficient belonging to each
bead,L - r; the ambient velocity of the solvent at beagwherelL is the velocity gradient
tensor), and; the flux velocity of bead appearing in the equation of continuity fgr(r;,)
given by

Iy AR
= — - (FY). 18
o’ ; o () (18)
An expression for the stress tensbrin terms of microscopic quantities is the so-called
‘Kramers form’ [2, 14],i.e.,
kT . 1O .
T=—pl+2pD—(N-1D)—1+— ) (f.f.), 19
pl+2n AT ; (19)

wherel is a unit tensorp the undetermined pressur®, = %(L + LT) the rate-of-strain
tensor,Vs the container volume (in which one bead-spring cube is immersed in a Newtonian
fluid of viscosityn,), and(- - -} denotes an average with respect to the distribution function in
configuration space.

3. A confined bead-spring cube consisting of equal Fraenkel springs

In a previous paper [7] we considered a bead-spring cube immersed in a Newtonian fluid,
where the spring characteristics were chosen to be Hookean, while the topology of the cube
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was based upon a simple, body-centered, or face-centered cubic lattice. However, a cubic
topology does not necessarily imply a cubic ordering of the beads in real space. Actually,
in case of a Hookean cube the actual shape of this bead-spring structure is in general by no
means cubic.

To obtain a cubic-like ordering of the beads in real space we consider in this paper a
bead-spring cube immersed in a Newtonian fluid, where the Hookean springs are replaced by
equal Fraenkel springs. The spring forég$elonging to these Fraenkel springs are defined
as [2, 11]

f,=x (1— ri) F, (20)

in which « is the spring constant angla spring parameter that is strongly related (but not
equal) to the equilibrium length of each spring., the spring forcd , is zero for7, = ¢,
attractive for7, > ¢ and repulsive fof, < ¢. To keep the forthcoming analysis as simple as
possible we will only consider the case that the topology ofkhek K Fraenkel bead-spring

cube is based upon the simple cubic lattice and, furthermore, we confine this Fraenkel cube to
a cubic container of volum¥s = Ng¢3 = (K¢q)3.

The beads at the outer surfaces of the Fraenkel cube experience container wall forces. The
main effect of these short-range wall forces on the motion of all the beads is to maintain
the beads at the simple cubic lattice points in real space. To keep the bead motions largely
limited to local excursions centered on these lattice points, the spring cornstaohosen to
be sufficiently large. In the forthcoming modeling we will not include the explicit influence of
the wall forces in the equation of motion given by Equation (18), only an implicit effect
of the wall forces is taken into account: the simple cubic ordering of the beads in real space.
We note that the neglecting of explicit effects of the wall forces is only appropriate for large
bead-spring cubes.€., the size parametdd should be sufficiently large).

In consequence of this simple cubic ordering of the beads in real space, the motion of
the bead position vectors will take place around the constant vectsrswhich denote the
lattice point positions of the simple cubic lattice. In the same way, the motion of the connector
vectorsrt, will take place around the constant vectqgs The vectorsy, are equal tge,, ge,,
andge, for springs in thex-, y-, andz-direction, respectively, where the vectexse,, ande,
form a fixed orthonormal basis in space.

In case of a sufficiently large spring constarthe deviatiord, = f, — q, will be small so
that Equation (20) may be approximated by its first order Taylor-exparisén,
Q.Y

g%’

f,=«P,-d, with P, = (21)
where the projection tensd?, is equal toece,, €6, ande,e, for springs in thex-, y-,

and z-direction, respectively. By substituting Equation (21) in Equation (17) and by using
a transformation similar to Equation (I)g, d, = ) _ G,; d; with d; = r; —s;), we obtain the
equation of motion fod; given by

. 1 dlogy’ ML
dz:Ldz+LS_E kT +KZZGaiGabPa'db ’ (22)
a=1 b=1

ad;

wherey ' is defined asy '(dV, 1) = v (", 1).
The relationV, = Ng°® and the expression for the Fraenkel spring given by Equation (20)
are substituted in the expression for the stress tehgven by Equation (19), which leads to
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N — kT
T:—pl—i—ZmD—#lﬁ—T/, (23)
Ng3
where stres§ ' is the second order Taylor expansion of the last term on the right hand side of
Equation (19)j.e., for small deviationgl, = ¥, — g, this term is given by

T =X (<paaa dp.aa>+pa<qa.aa+gaa.(1_3pa).aa>). (24)

4. Small-amplitude oscillatory shear flow

4.1. CONSTITUTIVE EQUATION

We now restrict ourselves to the case of a small-amplitude oscillatory shear flow with angular
frequencyw, where the direction of the flow velocity is in tleg-direction and its gradient in
thee,-direction,i.e., these two directions coincide with two principal directions of the bead-
spring cube (denoted by andy in Figure 1). For the velocity gradient tendorthis means
that L, = iwy, expiowt) with amplitudey, < 1, while the other elements afare zero. For
such a flow field only the xy-component of the stress tefisand thex- andy-coordinates of
the deviationgl; andd, are of particular interest.

As mentioned in Section 3 the projection ten&yris equal toee,, e,e,, ande.e, for
springs in thec-, y-, andz-direction, respectively. By combining these projection tensors with
Equations (22), (23), and (24) we obtain

. 1 dlo
dix = Luydiy + Luysiy = ¢ (kT 8; LA Z A, ) , (25)
LX b=1

diy = 1 (k 0 Iog‘/f ZA dby> (26)

Ty = Lo + 33 <Y (45 +4}) (@), (27)

i=1 j=1

where the definitions of matrices* and A are given by Equations (6) and (7), respectively.
The set of vectorsl; is transformed into a set of normal coordinate vectrby a trans-
formation of the type

al 9 N 9
di:ZQijEj’ EZZQUE’ (28)
j=1 b=t J

where the orthogonal transformation matgxis defined by Equation (14). By using Equa-
tions (9), (10), and (28), we transform Equations (25) and (26) into equations of motion in the
&-representation,e.,

N _

. 1 dlogy’ .

§ix = Lyy&iy + Ly § : Qjisjy — E (kT JE; +kq gfi.,x) ) (29)
=1 i,x
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: 1/, 9logy’
by =—3 (kT% + Ka,ys,-,y) , (30)

where ' is defined asy (", 1) = ¢ '(d", 1) = ¢ (", 1) and the sets of eigenvalues

anda?’ are defined by Equations (9) and (10), respectively. In the same way we transform the
xy-component of the stress tendogiven by Equation (27) into thé-representation,e.,

N
. K
T = Lone+ D TH, with TS, = 5o () + ) (i), (31)
i=1

where(é; & ;) = 0 for the modes witle; = 0. Consequently, the stre‘sﬁgy is zero for each
normal mode with:;' = 0 and we only have to consider the modes with 0.

By transforming the equation of continuity fgr(r", r) given by Equation (18) into an
equation of continuity fory'(€", ), by multiplying both sides of the resulting equation
by & .&: ,, and by integrating it over the entiéespace, we obtain for the modes with # O:

d . . K , kT

E(Ei,xéi,y) = (&ix&iy) + Eixbiy) = 7 (af +a)) (&ix&iy) + mny, (32)
where we have used the relations

kT dlogy’
i = o’ 2 = —, ; - —l. 33

(i) (67 p <§l %€, > (33)
By combining Equations (31) and (32) we obtain a constitutive equatioﬁ.ffgr i.e.,

foray =0 T/, =0, (34)

dr’t 1 kT
y Xy P _
forai #0 ar + )\,_l-]}’xy = ,lLiN—q3ny, (35)

with the relaxation timeg; and the relaxation strengths given by
a;

3 wi =1+ (36)

A= ————,
K (af +a]) a;

4.2. RELAXATION SPECTRUM

By combining Equations (9), (10), (13), and (36), we obtain expressions fdt t& — 1)
relaxation times.; and their strengthg; which are given by

¢

()]

)"i = )"klm = (37)

(38)
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Figure 2. The reduced relaxation spectrufi*()) for a confinedk x K K Fraenkel bead-spring cube immersed
in a Newtonian fluid: (ak = 25, (b)K = 50, (c)K = 100, and (d)X = 1000.

withi = K(K—-Dk+K(—1)+m,k=0...(K-=1),l=1...(K—=1) andm =1...K.The
relaxation times,; given by Equation (37) are distributed between minimum and maximum
values given by

¢ _ 8K%hmin _ CK?

Amin = —— -
min 8/(, max 7_[2

(39)

Tk’

At this moment it is convenient to introduce a relaxation spectflith, Alog;oA) that
represents a weighted distribution of relaxation times, H (A, Alog;gA) is defined as
the weighted number of relaxation times satisfying loggt — Alog; o2 < log;gr; <
log; oA + Alog;p A, where the weights belonging to these relaxation timese equal to their
strengthsy,. For a confinedk x K K Fraenkel bead-spring cube immersed in a Newtonian
fluid this spectrumf (A, Alog;,2) can be calculated by using the expression forkiKex —

1) relaxation times\; and their weightsu; given by Equations (37) and (38), respectively.
In Figure 2 we depict the reduced relaxation specti#iir) = H(x, 0-0022/K?(K — 1)

as a function of the reduced time/ A, for four different sizes of thek x K K Fraenkel
bead-spring cubé.e., parameteK is equal to 25, 50, 100, and 1000, respectively.

One observes in Figure 2 that the reduced relaxation speditth) converges gradually
toward a ‘continuous’ spectrum K increases. In Figure 2d one observes that for a 2000
1000 x 1000 Fraenkel cube the relaxation spectrifth, 0-0022 represents a continuous
function for the regionsimin < A < 2Amin and 2xin < A < 10Ayin With two Van Hove
singularities at the times = Amin andA = 2Anin. This ‘continuous’ spectrum belonging to
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a large ‘three-dimensional’ Fraenkel cube has the same shape as the one belonging to a large
‘two-dimensional’ K x K cubic network consisting of equal Hookean springs [8].

At first sight, this result might be somewhat surprising, but there is good explanation for it.
To obtain this result we have used in our bead-spring model the first order Taylor-expansion
of the Fraenkel forcé, defined by Equation (20). The linearized Fraenkel fdrcgiven by
Equation (21) is, however, always in the direction of the constant vggi@o if one considers
a ‘two-dimensional’K x K substructure of th& x K K Fraenkel cube (consisting &f(K —1)
springs withg, = g, andK (K — 1) springs withg, = ¢e,), then thez-components of the
2K (K —1) spring forced , of this particulark x K substructure are always equal to zero. One
might therefore say that thE x K K Fraenkel cube consists & ‘two-dimensional’ K x K
substructures (with only springs in thedirection andy-direction), which are interconnected
by K?(K — 1) springs in thez-direction (note that th&k x K K Fraenkel cube is subjected
to a small-amplitude oscillatory shear flow with the flow velocity in gedirection and its
gradient in thee,-direction).

Consequently, it is not really surprising that the expression for the relaxation times
given by Equation (37) is equal to the expression Xpibelonging to a ‘two-dimensional’

K x K cubic network consisting of equal Hookean springs [8]. Note that the relatign=

.= Am = ... = Ak (@nd, inthe same way,y1 = ... = wum = ... = unx) reflects our
conception that th&k x K K cube consists oK ‘two-dimensional’ substructures with only
springs in the x- and y-direction. On the other hand, the Fraenkel character of the springs
in the K x KK cube and the presence of springs in thdirection (which interconneck
‘two-dimensional’ substructures) are reflected by the expression for the relaxation strengths
w; given by Equation (38), which is clearly different from the relatipn= 1 valid for the
‘two-dimensional’ Hookean case [8].

This difference in the Hookean and Fraenkel expressions for the relaxation strengths
leads to a different larg& dependency of the reduced relaxation spectddiir). For the
‘two-dimensional’ Hookean case it is observed that the specHtit) for a sufficiently large
K x K cubic network does not change anymore if one increases the size par&hi8ieFor
the K x KK Fraenkel cube one observes that the lakgeependency off*(1) is different
for the two regions of small and large timgsin the region of small times.€., A < 2Amin)
there is no difference between the spectrih(r) for K = 1000 and the one for a value
of K larger than 1000. On the other hand, in the region of large timesX > 2imin) the
spectrumH*(1) for a Kx KK cube withK > 1000 appears to be smaller than the one
belonging to a larger cubég,, for large K the maximum value oHH*(1) atA = 2iyn can
be approximated by 0335log K)—0-0394, while similar approximations fdf*(1) are valid
for timesi > 2Amin.

4.3. DyNAMIC MODULI

In Section 4.1 we obtained a constitutive equation for the sﬂjé’@s[see Equations (34) and
(35)], which belongs to a confined Fraenkel bead-spring cube immersed in a Newtonian fluid.
To obtain this constitutive equation f@y" we have restricted ourselves to a small-amplitude
oscillatory shear flow with frequencgo, Where the directions of the flow velocity and its
gradient coincide with two principal directions of the simple cubic bead-spring structure.

This constitutive equation fcﬁ’iﬁy can be used to determine the dynamical response of the
stressT, given by Equation (31) on the applied flow velocity gradiént = iwy, exp(iwt),
where the elastic and viscous stress response are characterized by the storage @igdulus
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and the loss modulu§”(w), respectively. It can be shown (seeg., Bird et al. [2]) that the
constitutive equation foTif;y given by Equations (34) and (35) leads to expressions for the
dynamic moduliG'(w) andG"”(w) given by

K2(K-1)

, . kT (w)i)?
Oy & M T “
K2(K—1) ok
G (w)_nsw+(K )3 Z Mll+(a))\,)2, (41)

where the relaxation times; and their strengthg; are given by Equations (37) and (38),
respectively.

Numerical calculations of the dynamic moddi (w) and G”(w) for different sizes of
the K x K K Fraenkel cube will indicate that three different frequency regions can be distin-
guishedj.e., a low, an intermediate, and a high-frequency region. For each region we obtained
asymptotic expressions for the moddli(w) andG” (w) (see Dennemaet al.[7] and Van der
Vorstet al.[15] for the method to obtain these asymptotes). The two boundaries of these three
frequency regions depend upon the values of the minimum and maximum relaxation times
Amin @NdAmax (S€€ Equation (39) for their definitions).

The asymptotic expressions for the storage modGI/uja)) are

kT 8(K* —

OAmin K Okmax K 11 G (0) = (wxm.n)2 (42)
g® 5K?
, kT 4(K? — 1)
whmin K 1 <K ©Amax: G(w) =~ ?—31( (w)tmin)3/27 (43)

kT (K —1)(K*+3K - 1)

1 < Ohmin € ®Amax: G'(w) = pE 3K2 (44)
and the asymptotic expressions for the loss modaligy) are
B kT 4(K? — 1)
Ohmin K 0Amax <K 11 G'(w) — nyw = _3—(w)\min), (45)
q 3K
kT 4(K? — 1
Whmin K 1 K OAmax : G”(a)) — N0~ Tg(wkmin), (46)
q 3K
_ kT (K —1)(3K?+ 17K — 16
( )( + ) (47)

L @hnin L @hnac: - GH0) =mo =g 24K2 (0hmin)
Note that Equations (45) and (46) are identidad,, the frequency-dependency of the loss
modulusG”(w) is in the low frequency region and in the intermediate frequency region the
same. Furthermore, by combining Equations (43) and (46) we obtain for the intermediate
frequency regiowimin < 1 < wimax @n expression which is independent of the size of the

K x K K Fraenkel cubsg,e.,

G'(w)

~ (whmin) Y2, 48
G'(@) — new (wAmin) ( )
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Figure 3. The storage modulu§’(w) and the loss modulu§” (w) belonging to a confined 1000 1000 x 1000
Fraenkel cube immersed in a Newtonian fluid with viscosjty = 0: (a) the reduced storage modulus
Ioglo(G’(w)q3/kT) as a function of reduced frequency l@gwAimin) (the dashed lines are the asymptotic ex-
pressions given by Equations (42), (43), and (44) and the thick line is its exact calculation) and (b) the reduced loss
modulus IogO(G”(w)q3/kT) as a function of reduced frequency {@gwAmin) (the dashed lines are asymptotic
expressions given by Equations (45), (46), and (47) and the thick line is its exact calculation).

As an example we consider a 10€01000 x 1000 simple cubic bead-spring structure,
which consists of equal Fraenkel springs and is immersed in a Newtonian fluid with viscos-
ity ns = 0. This Fraenkel cube is confined to a cubic container of voline- (1000¢y,
whereg is the spring parameter as given in Equation (20). In Figure 3a the three asymptotic
expressions given by Equations (42), (43), and (44) are compared with the exact calculation
of the expression foG'(w) given by Equation (40), and in Figure 3b the three asymptotic
expressions given by Equations (45), (46), and (47) are compared with the exact calculation
of the expression fo6” (w) given by Equation (41). In both figures the two boundaries of the
three different frequency regions are given by |@@Amin) = 0 and logy(wAmin) = —59
(i.e., log;g(wimax) = 0), respectively, and we observe that the asymptotic expressions for the
three different frequency regions do approximate the exact calculations very well.

The dynamic modulG'(w) andG” (w) belonging to &K x K K Fraenkel bead-spring cube
appears to be similar to the ones belonging t&aK K cube consisting of equal Hookean
springs [8]. That is, the frequency-dependency of the dynamic moduli (the slopes in Figure 3)
is for the ‘three-dimensional’ Fraenkel and Hookean cube exactly the same.

5. Concluding remarks

In this paper we have obtained the relaxation spectfita, Alog;oA) and the dynamic
moduli G’ (w) and G”(w) belonging to a confined Fraenkel cube immersed in a Newtonian
fluid. To obtain these results we have restricted ourselves to a small-amplitude oscillatory
shear flow with frequency, where the directions of the flow velocity and its gradient coincide
with two principal directions of the bead-spring cube.

The obtained relaxation spectrul(x, Alog;y,4) belonging to a largk x K K Fraenkel
cube appears to have the same shape as the one belonging to a large ‘two-dimensional’
K xK cubic network consisting of equal Hookean springs (including the two Van Hove
singularities). Actually, the relaxation timas belonging to the ‘three-dimensional’ Fraenkel
case and the ‘two-dimensional’ Hookean case appear to be the same, but their sirengths
differ. Due to this difference in relaxation strengths the dynamic modlv) and G” (w)
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belonging to the Fraenkel bead-spring cube are not identical to the ones belonging to a ‘two-
dimensional’ Hookean cubic network. Instead, the Fraenkel moduli have exactly the same
frequency-dependency as the ones belonging to a ‘three-dimensional’ Hookean bead-spring
cube.

The substitution off = 0 in the expression for the Fraenkel spring force given by Equa-
tion (20) leads to a Hookean spring force, so one would expect that the rheological behavior
of a confined Fraenkel cube with— 0 is identical to the rheological behavior of a Hookean
cube. Surprisingly, the results obtained in this paper do not fulfill this expectation. Why?

To answer this question it is noted that in the modeling &fak K Fraenkel cube confined
in a container of volum&s = (K¢)® we have assumed a simple cubic ordering of the beads
in real space (in contrast with the Hookean case where this ordering is by no means present).
However, in the limity — 0 this assumption is not valid anymaore: (i) the limit—> 0 leads
to a non-physical size of the container (.6 = (K¢)3 — 0) and (ii) for a decreasing the
influence of the Brownian bead motion in destroying the simple cubic ordering in real space
is increased (resulting in a non-ordered system in the lmit 0). The analysis presented in
this paper is therefore only valid in case of a sufficiently large spring parageter

Another interesting limit is the ‘stiffened’ Fraenkel spring limit— oo. This limit is not
called the rigid rod limit, because there exists a fundamental difference between a stiffened
Fraenkel spring and a rigid rod. This difference is associated with some fundamental problems
related to the freezing out of a degree of freedom (seg., Gottlieb and Bird [16], Van
Kampen [17], and pp. 4647 in Biet al.[2]). In the stiffened Fraenkel spring limit we obtain
Amin = 0 andimax — 0, which results in dynamic moduli’(w) — 0 andG”(w) — n,w.

This result is in consequence of the confinement of kheK K Fraenkel cube to a cubic
container of volumé/s = (K ¢)2, whereby the orientability of the cube is limited such that it
cannot rotate freely anymore.

Although bead-spring models are normally used to model polymer systems, we finally
note that we have recently used a model based upon Fraenkel bead-spring cubes to describe
successfully the rheological behavior of a colloidal crystal [18]. However, the model based
upon Fraenkel cubes presented in the paper on colloidal crystals is not a trivial extension of
the model presented in this paper (afick versy.
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